This comprehensive and self-contained textbook presents an accessible overview of the state of the art of multivariate algorithmics and complexity. Increasingly, multivariate algorithmics is having significant practical impact in many application domains, with even more developments on the horizon. The text describes how the multivariate...
This book focuses on Renewable Energy (RE) governance - the institutions, plans, policies and stakeholders that are involved in RE implementation - and the complexities and challenges associated with this much discussed energy area. Whilst RE technologies have advanced and become cheaper, governance schemes rarely support those technologies...
This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while...
Cost optimal and nearly zero energy performance levels are principles initiated by the European Union’s (EU) Energy Performance of Buildings Directive which was recast in 2010. These will be major drivers in the construction sector in the next few years, because all new buildings in the EU from 2021 onwards are expected to be nearly...
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised...
Finite-time stability (FTS) is a more practical concept than classical Lyapunov stability, useful for checking whether the state trajectories of a system remain within pre-specified bounds over a finite time interval. In a linear systems framework, FTS problems can be cast as convex optimization problems and solved by the use of effective...
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systems for continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain...
This book details the theory, algorithms, and applications of structured low-rank approximation, and presents efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel and Sylvester structured problems and more....
This collection, ‘‘Advances in Physiological Computing,’’ constitutes the most
significant milestone thus far on an idea track that stretches back through the
vision posed by Allanson and Fairclough’s ‘‘A research agenda for physiological
computing’’ (2004) and the body of work...
Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics...
This easy-to-follow and classroom-tested textbook guides the reader through the fundamentals of programming with Python, an accessible language which can be learned incrementally.
Features: incudes numerous examples and practice exercises throughout the text, with additional exercises, solutions and review questions at the...
Dynamic Programming for Impulse Feedback and Fast Controls offers a description of feedback control in the class of impulsive inputs. This book deals with the problem of closed-loop impulse control based on generalization of dynamic programming techniques in the form of variational inequalities of the...