Evolutionary robotics is a new technique for the automatic creation of autonomous robots. Inspired by the Darwinian principle of selective reproduction of the fittest, it views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention. Drawing heavily on...
Your complete guide to the Joomla! content management system
Whether you use Joomla! to power a website, intranet, or blog, you'll need a good how-to reference on this complex, but not always intuitive, content management software. Joomla! Bible, Second Edition is that book. It not only brings you up to speed on...
Neural Networks for Pattern Recognition takes the pioneering work in artificial neural networks by Stephen Grossberg and his colleagues to a new level. In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before. Following a tutorial of existing neural...
Learning to perform complex action strategies is an important problem in the fields of artificial intelligence, robotics, and machine learning. Filled with interesting new experimental results, Learning in Embedded Systems explores algorithms that learn efficiently from trial-and error experience with an external world. It is the first...
Using the tools of complexity theory, Stephen Judd develops a formal description of associative learning in connectionist networks. He rigorously exposes the computational difficulties in training neural networks and explores how certain design principles will or will not make the problems easier.
Neural networks usually work adequately on small problems but can run into trouble when they are scaled up to problems involving large amounts of input data. Circuit Complexity and Neural Networks addresses the important question of how well neural networks scale - that is, how fast the computation time and number of neurons grow as the...
Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is protected when you make a purchase over the Internet? The answer is algorithms. And how do these mathematical formulations translate themselves...
This mathematically oriented introduction to the theory of logic programming presents a systematic exposition of the resolution method for propositional, first-order, and Horn- clause logics, together with an analysis of the semantic aspects of the method. It is through the inference rule of resolution that both proofs and computations can be...
Within the field of logic programming there have been numerous attempts to transform grammars into logic programs. This book describes a complementary approach that views logic programs as grammars and shows how this new presentation of the foundations of logic programming, based on the notion of proof trees, can enrich the field.
Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to...
Montgomery, Runger, and Hubele provide modern coverage of engineering statistics, focusing on how statistical tools are integrated into the engineering problem-solving process. All major aspects of engineering statistics are covered, including descriptive statistics, probability and probability distributions, statistical test and...
This timely overview and synthesis of recent work in both artificial neural networks and neurobiology seeks to examine neurobiological data from a network perspective and to encourage neuroscientists to participate in constructing the next generation of neural networks. Individual chapters were commissioned from selected authors to bridge the...